
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

Browser Branched Navigation Using Tree-Like

Session History

Raden Rifqi Rahman – 13520166

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13520166@std.stei.itb.ac.id

Abstract—Browsers save users’ browsing history either globally

in all-time browsing history or locally in session history. The

session history is a browsing history that is local to a browsing

context or a tab. It consists of a sequence of documents. Users

sometimes accidentally click the wrong link or Uniform Resource

Locator (URL). With the structure of sequence of documents, this

accidental click may result in browser navigating the user on such

URL and session history deleting some of its entries

unintentionally. To address this issue, we can implement a

branched navigation model. Branched navigation model is

described as a navigation model that allows users to navigate

backwards in one way, but multiple ways forwards. It is

implemented by taking advantage of tree-like session history in

contrast to linear session history with linear navigation model.

Branched navigation model allows us to branch a session history

entry without having to delete any of the existing entries or create

a new browsing context. Consequently, branched navigation model

compensates the carelessness of users that may click a URL

unintentionally.

Keywords—Branched navigation, session history, browser.

I. INTRODUCTION

A browser works by sending and receiving data or

information from the web. Sending and receiving such data

requires us to do certain actions, including clicking a link and

entering a web address or a Uniform Resource Locator (URL)

to the browser address bar. Upon receiving data, browsers may

display a new web page to our screen. Browsers may also alter

or update the currently displayed page. Such pages are usually

present in terms of Hypertext Markup Language (HTML)

document and Extensible Markup Language (XML) document.

Oftentimes, we want to move from a certain document or URL

to another document or URL while browsing. We rarely want to

stay at the same page for an extensive amount of time.

Users move to a new URL frequently. Moving to a URL is

said to navigate to that URL. While navigating, a browser keeps

track of what the user visits for possible later use. Every page or

URL the user visited is stored in a browsing history. That means

browser enables users to navigate back to any page they have

visited without having to remember its URL. Even though a

browsing history is useful, browsers allow user to do a parallel

browsing. Huang and White [1] states that “parallel browsing

describes a behavior where users visit web pages in multiple

concurrent threads.” Most browsers allow this by providing tabs.

With the existence of parallel browsing and tabs, users can

open and view multiple web pages at a time. Nonetheless,

browsers have such behavior that they save users’ browsing

history globally, meaning the browsing history of multiple tabs

are saved in a single browsing history in the browser. It may be

inconvenient for some users. When they browse with multiple

tabs, the browsing history for each tab may mix with one

another. To tackle this problem, browsers introduce another kind

of history, namely the session history.

A session history consists of a sequence of Documents in a

browsing context [2]. A Document is an object which represents

an XML or HTML document. On the other hand, a browsing

context is a place where such Document objects are displayed as

a web page to the user [2]. It is roughly analogous to a tab or

window in a browser. While having separate session histories

can be helpful, session history comes with its own limitations.

Since the structure of the session history itself is a sequence of

Documents, it is unable to save every page the user visits. The

session history will have to pop off or delete some of its contents

eventually. For example, suppose a user browses three pages in

sequence, say, page A, page B, and page C. Currently, the user

is at page C. Now suppose they navigate back to page B and will

return to page C afterwards. If by any chance, here, the user

clicks a link to another page accidentally, say page D, the

browser will navigate the user to page D, replacing page C from

the session history by page D. In consequence, the session

history loses page C forever and now contains page D instead.

This can be troublesome for the user.

Most users know how to retrieve their lost page via the

browsing history, i.e., the all-time history. Still, we know that

the browsing history mixes up all session histories. Moreover, a

study [1] claims that “57.4% of tab sessions involve parallel

browsing,” meaning a lot of users use more than a single tab

while browsing. Although it is possible to look up for the page

in the browsing history manually, it is likely to take quite a lot

of time.

To address this issue, we need session history to preserve

important pages in one way or another. Without having to

redesign a browser entirely, we can implement a branched

navigation model. Branched navigation means user can navigate

backwards in a single way, but multiple ways forwards. Instead

of using a sequence of Document objects, branched navigation

encourages session history entries to wrap those Document

objects inside a tree-like structure.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

II. TERMINOLOGY

A. Node

Nodes are connected data that is spread throughout memory

[3]. A node can contain any kind of data depending on how we

define it to be. Therefore, aside from primitive data types, such

as integers and characters, a node can hold a more complex data

type or structure. Regardless of what data type it holds, a node

always contains at least one link to another node.

B. Sequence

We refer to sequence as a collection of ordered elements that

share the same type. Reference [4] defines sequence as an

abstract data type that represents a collection of values, each of

which may appear more than once. In other terms, this data type

is commonly called linked list.

The term linked list is highly related to the term link in a node.

A sequence or a linked list consists of a list of nodes. Because a

node is spread throughout memory, each node in a sequence has

a link that points to the next node. Hence, the order of elements

in a sequence is determined by those links, with the last element

not having any links to any nodes. Fig. 1 shows a diagram which

represents a sequence of the first five natural numbers.

Fig. 1. A diagram representing a sequence of the first five natural numbers.

Each element within a sequence has its own unique index. The

index of an element is a number that identifies the order of

elements within a sequence. We refer to the first element of a

sequence as having an index of 0. Therefore, in Fig. 1 we refer

the node containing 1 to be at index 0, the node containing 2 to

be at index 1, and so on.

C. Tree

Tree is another node-based data structure besides sequence.

The main difference between a sequence and a tree is the link of

its nodes. Each node in a sequence can only contain one link,

whereas tree nodes may have links to multiple nodes [5]. Hence,

each node in a tree can point to multiple nodes, namely the child

nodes. The children of a node A are all nodes that A points to.

Consequently, A is the parent of all its children. For clarity, a

tree consisting of eight nodes can be visualized as shown in Fig.

2.

Fig. 2. A tree consisting of eight nodes.

The uppermost node, which is the node that no other nodes

point to, is called the root [5]. In Fig. 2, we call node A as the

root of the whole tree. We also call nodes B and C as the children

of node A. Likewise, E is a child of B and G is a child of C, but

F is neither a child of C nor A. To avoid confusion, the

visualization of a tree is highly analogous to a family tree. As in

a family tree, E is a sibling of F, and vice versa.

Some other terminologies we are interested to are

descendants and ancestors, level and height, and subtree. As

well as a family tree, a node may have descendants and

ancestors. According to [5], a node’s descendants are “all the

nodes that stem from a node”, whereas a node’s ancestors are

“all the nodes that it stems from.” In our visualization (Fig. 2),

A is the ancestor of every other node because all nodes except A

stems from A. Thus, nodes B-G are called the descendants of A.

Each node of a tree rests on a particular level. All nodes that

lie in the same row are said to have the same level. However,

multiple references [5], [6] define the level for each row

differently. Reference [5] states that the root node, which in our

case is A, lies in the first level of the tree; whereas [6] defines

the root has a level of zero. To unify this distinction, we refer to

the root node as having the first level. Aside from levels, trees

also have height. The height of the tree is the maximum levels

that the tree has [6].

The children of the root node of a tree are also a tree. These

trees are called subtree from the current tree. Therefore, the tree

in Fig. 2 has two subtrees with B and C as their root nodes, as

shown in Fig. 3.

Fig. 3. Subtrees of tree in Fig. 2. (a) The first subtree. (b) The second subtree.

D. Browsing Context

According to [7], a browsing context is “the environment in

which a browser displays a Document.” In modern browsers, a

browsing context is a tab, a window, or parts of the page, such

as frame and iframe. We mostly refer to a browsing context as a

single tab. However, it is not limited to a tab in general. The

HTML Living Standard [2] states that “a browsing context has

a session history, which lists the Document objects that the

browsing context has presented, is presenting, or will present.”

A Document is an interface which “represents any web page

loaded in the browser and serves as an entry point into the web

page’s content” [8].

E. Session History

We refer to session history as a collection of session history

entries. A session history entry contains a URL and a Document

object or null [2]. With linear navigation model, the session

history entries are organized in a sequence structure. Since a

sequence can be visualized with a diagram in Fig. 1, we can also

visualize a session history using such diagram. We may simplify

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

the visualization of the structure of each entry by giving each a

label. For instance, a session history consisting of three entries

with document A, B, and C is visualized in Fig. 4.

Fig. 4. Linear session history consisting of three entries.

Note that a sequence’s elements are ordered by default.

Nonetheless, the session history entries are also ordered. This

means the order of entry in the session history is determined by

the order of the element in the sequence. In consequence, the

session history depicted in Fig. 4 shows that a user browses the

document with label A, then navigates to B and C in order.

III. METHODS

A. Tree-Like Session History

Most browsers implement linear session history, i.e., each

session history entry is arranged in a sequence. As a result, linear

session history disallows us to branch an entry. Suppose we

surfed four documents in the web in sequence. By the time we

load the last document, our session history may look like this.

Fig. 5. Session history after surfing four documents.

The dashed arrow in the figure indicates the current history

entry or the document we are currently in. Hereafter, assume we

are forgetting something and need to look up document B. By

using linear navigation, we can navigate backwards directly

from D to B. At this moment, the session history still contains

documents C and D for us to navigate forwards as shown in Fig.

6(a). However, documents C and D are only preserved for as

long as we navigate forwards (or further backwards). This

implies that by the second we try to branch the history at any

point, the browser will remove all session history entries from

that point forwards. As an example, after navigating backwards

to B; if we go to another document N, the session history will

result in Fig. 6(b).

Fig. 6. Branching on linear session history. (a) Session history after navigating

backwards to B. (b) Result of navigating from B to N.

Instead of linear session history, we can implement a tree-like

session history. In contrast with linear history illustrated in Fig.

5, our session history tree will look like the following.

Fig. 7. Session history tree equivalent to Fig. 5.

By using the tree data structure, we enable each entry in the

session history to have links to multiple entries. Hence, the

session history will be capable to append a new entry at any

point which is equivalent to branching the history.

B. Branching

Branching a session history entry means creating a new

branch on such entry in our session history. Although it is not

possible to branch an entry in a linear session history, we still

can branch our session history. We can bypass the limitation to

branch linear session history with parallel browsing. Note that

each of Fig. 5, 6(a), and 6(b) is a linear session history of a single

browsing context. Therefore, we can create a new browsing

context to branch the history from document B in Fig. 6(a). In

other words, we may open a new tab to display the document N.

Hence, we will not modify the session history in Fig. 6(a). In

contrast with Fig. 6(b), with a new browsing context, our session

history will end up looking like Fig. 8 instead.

Fig. 8. Branching linear session history using multiple browsing context.

The dashed arrow in the figure indicates that we branch the

first browsing context at document B to a new browsing context

with document N. In other words, we open document N in a new

tab whilst staying in document B in the old tab. By expanding

our browsing contexts, we effectively solve our branching

problem. However, such branching model comes with its own

limitations. One of the issues is the disconnected history on the

second browsing context. We observe that document N is the

only entry that session history of browsing context 2 contains,

whereas it should come after document A since it is opened after

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

A considering the sequence of document in browsing context 1’s

session history. Although such behavior may be useful in some

cases, there is another issue. If we need to open a new tab or

create a new browsing context every time we branch a history,

the workload for our browser will grow up very quickly,

resulting in more computational resource we must provide for

the browser.

Instead of replacing the link of a session history entry node or

creating a new browsing context to branch as if in linear session

history, we can simply add a new link to another new node from

the entry we are currently in. With a similar scenario as before,

we can navigate backwards directly from D (Fig. 7) to B. If we

visualize these steps, we will end up with a session history that

looks like the one in Fig. 9.

Fig. 9. Session history tree after navigating to B.

So far, our session history tree behaves identically as linear

session history. As we observed, after navigating backwards to

document B, our session history in Fig. 8 looks identical with

the one in Fig. 6(a). Nonetheless, it will show a difference when

we try to branch the history. Continuing our scenario, we like to

open document N at this point. Since we are not in the lowermost

entry of our history, opening a new document means we are

about to branch the session history. To do a history branching in

our session history tree, we have to do the following steps.

First, we create a node of the new entry containing the

document N. Afterwards, we link the current entry, which in this

case is B, to the new entry as its child node. At the moment, our

session history tree will look like the following figure.

Fig. 10. Preparing to branch an entry in session history tree.

With a new entry created and linked to our tree, we are ready

to navigate to the new entry, namely the document N. In

comparison with previous results on linear session history, the

session history tree maintains document C and D as its entries

as shown in Fig. 11.

Fig. 11. Branching session history tree on entry B.

The figure shows us the result of branching a history entry

within a session history tree. As opposed to linear session

history, the session history tree still fits inside a single browsing

context without popping off any of its entries.

C. Branched Navigation

Aside from its similarities with linear session history, tree-

like session history has its own uniqueness and advantage. The

session history tree enables us to do a branched navigation.

Branched navigation model is described as a navigation model

that allows users to navigate backwards in one way, but multiple

ways forwards. It means whenever a user stays at a session

history entry which has multiple branches or children, they may

navigate to any of the branches or children, or even all their

descendants down further.

On the contrary, linear session history implements linear

navigation model. Linear navigation model is described as a

navigation model in which users always navigate in one way

either forwards or backwards. For example, suppose we have a

far more complex session history for both linear and tree-like

session history.

Fig. 12. Complex session histories. (a) Complex linear session history. (b)

Complex session history tree.

The figure above shows us two rather complex session

histories, both of which consisting of nine entries. By applying

linear navigation on session history in Fig. 12(a), we know how

browsers will handle the two directions of navigation. If we

navigate backwards, it means we are trying to reach either

document A, B, C, or D. Likewise, we are trying to reach either

document F, G, H, or I whenever we want to navigate forwards.

In accordance with this behavior, we can define navigating

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

backwards once as going back from E to D. Similarly, we can

define navigating forwards once as going forward from E to F.

By expanding this definition of navigation, we now have what

is called the linear navigation. As another example, it is said to

navigate twice backwards if we are going from entry E to C and

it is also said to navigate three steps forwards when we are

moving to H.

On the other hand, we may apply linear navigation to the tree-

like session history in Fig. 12(b). For a session history tree,

navigating backwards implies moving to any of the ancestor

nodes of the entry node we currently stay at. In Fig. 12(b),

navigating backwards is only possible to document A since it is

the only ancestor of the entry we are currently in, which is B.

However, it is not so clear how does forwards navigation work

within session history tree. Since B has two children namely G

and C, we cannot define exactly how is navigating forwards

done in session history tree. If we define navigating forwards

once from B as going to G, then navigating from B to C is not

defined at all since we are not able to reach C from G. Therefore,

we need to apply our branched navigation model on this session

history tree.

The branched navigation model introduces a new method of

navigating forwards. As stated, we have multiple ways to

navigate forwards. Linearly, there are three ways of forwards

navigation in Fig. 12(b) which are G-H, G-I, and C-D. Still, we

cannot pick any of them because we will never reach the others

if we do. With that being said, the branched navigation model

groups all of descendants of the current entry node as a

collection of entries. Consequently, forwards navigation in Fig.

12(b) refers to going forward to any of the entries G, C, H, I, and

D regardless of the order. Thus, the n-steps forwards navigation

is not defined in branched navigation model.

Browsers should handle forwards navigation in branch

navigation model differently. If a user tries to navigate one step

forwards, there are two possibilities that browsers can handle

differently. One possible scenario is if there is only one child of

the current session history entry. In that case, browsers can

directly navigate the user to the child entry as if it was a linear

session history. Another scenario is when there are multiple

children of the current entry. In this case, browsers have to ask

the user for which child they like to navigate to. For instance,

suppose a user try to navigate one step forwards in Fig. 12(b).

Since B has two children, G and C, we need to ask the user to

ensure whether they want to navigate to G or C.

We also notice that the entries E and F are not accessible from

B, meaning we cannot navigate directly from B to either E or F.

This is an expected behavior of branched navigation model that

we don’t have to worry about. Recall that in Fig. 6(a) and 6(b)

branching a linear session history results in deleting all entries

that is on the same index or higher. It means that all entries with

the same indices are not always related with each other. By

analogy with tree-like session history, each entry that lies on the

same level is not always directly related with one another.

Despite sharing the same parent, sibling entries don’t

necessarily share the same information or context. Hence, it is

reasonable if we are restricted to directly navigate to E and F in

Fig. 12(b), or any of their children entry if any. It is also useful

to separate different environment or section of our session

history.

IV. IMPACT AND DISCUSSION

A. Advantages and Disadvantages

Branched navigation model has its own advantages against

linear navigation model. We saw that branched navigation

model with session history tree allows us to branch a history

entry without having to delete any of the existing entries or

create a new browsing context. Branched navigation model also

grants us the ability separate a different environment or

workspace in our browsing session within a single browsing

context. Among those advantages, we recognize that there are

some disadvantages on branched navigation model as well.

Our example in Fig. 12 informs us a minor disadvantage of

branched navigation model. In branched navigation model with

session history tree, we cannot define the flow of forwards

navigation by default. In case of having multiple branches from

the current session history entry, we always need to confirm

which branch the user wants to navigate to. As an impact, if we

apply the branched navigation model to modern browsers, they

have to change the flow or algorithm of forwards navigation

slightly. By default, browsers forward button works by

navigating the user one step forwards if there are any entry

forwards or is disabled when no more entry exists after the

current entry. However, since we cannot define the n-steps

forwards navigation, we will have to change how this button

works.

The forward button in branch navigation model navigates the

user differently. First, we group all descendants of the current

entry. Then, we ask the user to choose one of the descendants to

navigates to. Nonetheless, there is a certain priority to determine

how are those descendants served to the user to choose. Note

that each node in the tree rests on a certain level. By using the

information of each entry’s level, we can pick the most relevant

entries first for the user to choose. In Fig. 12(b), we know that

the entries G and C are the children of the current entry, B.

Hence, it is highly likely that they are the most relevant entry to

the current entry. Thus, we assume the user would like to

navigate to any of them. However, it is not always the case. In

case the user wants to navigate to H, I, or D directly, we allow

the user to expand either G or C, or both, so that the user finds

the exact entry they want to navigate to. For example, Fig. 13

shows how the user can navigate directly to entry I.

Fig. 13. Branched navigation to entry I. (a) The first entries for the user to

choose. (b) User expands G to reach I.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

Apart from the minor advantage of forwards navigation,

branched navigation model also has a major disadvantage. We

notice that in Fig. 10, branching an entry in session history tree

does not involve deleting or popping off any of the existing

entries. In consequence, visiting 100 different documents in any

order or branch results in a session history tree with 100 entry

nodes. If we let it be, the session history will eventually grow

larger quickly and takes a lot of space or memory. This is a new

issue to take care of.

B. Saving Space

Space constraint is a new issue and major disadvantage that

the branched model navigation introduce. Because the session

history tree never deletes its entries, a single browsing context

implementing branched navigation model can take a lot of space

equivalent to parallel browsing. Therefore, it is considerably

good for session history tree to delete its entries sometimes.

However, we need to be careful on which entry to delete.

Choosing a session history entry to delete may not look

straightforward. Since branched navigation model makes use of

tree data structure, deleting a session history entry inside a

session history tree implies deleting its node and all of its

descendants. Hence, we can conclude that we cannot delete any

of all ancestors of the current entry because if we do, we also

delete the current entry.

In branched navigation model, every child of the current entry

and its descendants need to be preserved since it is the sole

purpose of the branch. At this point, we know that we have to

keep all ancestors and descendants of the current entry in session

history tree. That being so, the only entries we are allowed to

delete are the siblings of the current entry and their descendants.

Even though we know which entries to delete, we still have to

determine when to delete them.

Deleting an entry from session history tree should not be done

every time a user navigates because it will defeat the purpose of

branched navigation model to preserve certain branches.

Instead, we can delete an entry when we are sure that the user is

no longer interested in the entry we are about to delete. To be

assured that the user is no longer interested to the entry, we may

suggest a measure to determine user’s interest to each entry

within a session history tree. This measure is called the session

history entry persistency.

Thus far, we are restricted to delete all ancestors and

descendants of the current session history entry. This indicates

that the ancestors and descendants of the current entry are

always persistent. On the other hand, the remaining entries do

not necessarily need to be persisted. By adding additional piece

of data to each entry within a session history tree, we will be

able to determine when to delete an entry from the session

history tree. This piece of data is called the persistence of an

entry.

The persistence of an entry is a number that determines the

lifetime of the entry. Every time the user navigates, all entries

that need to be persistent are assigned the value of maximum

persistence which is a configurable predetermined value. On the

contrary, instead of instantly deleting the remaining entries, each

of the remaining entries persistence will decay over time. The

persistence of them will be reduced by 1 every time the user

navigates. Upon reaching a persistence value of 0, the user is

considerably no longer interested in such entries, and we are

assured to delete them from its session history tree. For example,

suppose the session history tree in Fig. 12(b) has a maximum

persistence of 3 and let all entries have a persistence of 3.

Fig. 14. Session history tree with entry persistence.

The figure above shows us a session history tree equivalent to

Fig. 12(b) with the persistence of each entry. In Fig. 14, if we

navigate three consecutive times without moving to document

A, we are considered to no longer be interested in E and F. As

depicted in Fig. 15(a), 15(b), and 15(c), if we navigate to C, D,

and back to B consecutively, the persistence of E and F will

decay to 0 over time.

Fig. 15. Decay of entry persistence. (a) First navigation. (b) Second navigation.

(c) Third navigation.

The steps depicted in the figure above tells us that after some

navigations, determined by the maximum persistency, one or

more entry will eventually reach 0 persistency. Hence, the entry

persistency works perfectly to determine whether a user is still

interested in a document or not. However, it is not mandatory to

set a maximum persistency to 3. In general case, the more

branches the session history has, the higher the value of

maximum persistency should be to correctly measure user’s

interest on a document or entry. Since the user is likely to only

sticks to a few branches instead of all available branches, some

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

branches will have to be deleted eventually to save some space

regardless of how the user navigates around. By applying this

measure, we solve branched navigation model space constraint

issue.

V. CONCLUSION

Branched navigation model is described as a navigation

model that allows users to navigate backwards in one way, but

multiple ways forwards. It is implemented by taking advantage

of tree-like session history in contrast to linear session history

with linear navigation model. Branched navigation model

allows us to branch a session history entry without having to

delete any of the existing entries or create a new browsing

context.

Branched navigation model has a known minor and major

disadvantage. The minor disadvantage of the navigation model

is that browser is not always certain of where to navigate user

forwards. The major disadvantage of branched navigation model

is the uncertainty of when to delete an entry from the session

history tree. However, there is a suggested solution on this issue,

namely the implementation of session history entry persistency.

By assigning a persistence value for each entry within the

session history tree, there is a measure to determine when an

entry should be removed from the session history tree.

VI. ACKNOWLEDGMENT

First and foremost, I would like to praise and thank God, the

Almighty, who has granted me countless blessing, knowledge,

and opportunity to finish this paper. I would also like to express

my gratitude to all lecturers of IF2120 Matematika Diskrit who

encourage me to write this paper at the first place. Last but not

least, I would also like to thank my family who supports me

throughout life.

REFERENCES

[1] J. Huang and R. W. White, “Parallel browsing behavior on the web,” in
Proc. 21st ACM Conf. Hypertext and Hypermedia, 2010, doi:

10.1145/1810617.1810622.

[2] HTML Living Standard, Dec. 8, 2021. Accessed on: Dec. 11, 2021.
[Online]. Available: https://html.spec.whatwg.org/

[3] J. Wengrow, “Node-Based Data Structures,” in A Common-Sense Guide

to Algorithm and Data Structures, B. MacDonald, Ed., 2nd ed, Raleigh,
North Carolina, USA: Pragmatic Bookshelf, 2020, ch. 14, pp. 225–246.

[4] Institut Teknologi Bandung. (2021). ADT List. [Online]. Available:

https://cdn-edunex.itb.ac.id/32549-Algorithm--Data-Structure-Parallel-
Class/34114-Week-03/17283-Lecture-Notes/1630998282515_W03_A1

_ADTList.pdf

[5] J. Wengrow, “Speeding Up All the Things with Binary Search Trees,” in
A Common-Sense Guide to Algorithm and Data Structures, B. MacDonald,

Ed., 2nd ed, Raleigh, North Carolina, USA: Pragmatic Bookshelf, 2020,

ch. 15, pp. 247–278.
[6] K. H. Rosen, “Trees,” in Discrete Mathematics and Its Applications, B.

MacDonald, Ed., 8th ed, New York, NY, USA: McGraw-Hill Education,

2019, ch. 11, sec. 1, pp. 781–791.
[7] MDN Contributors. “Browsing context - MDN Web Docs Glossary:

Definitions of Web-related terms | MDN.” MDN Web Docs. Accessed on:

Dec. 11, 2021. [Online]. Available: https://developer.mozilla.org/en-
US/docs/Glossary/Browsing_context

[8] MDN Contributors. “Document - Web APIs | MDN.” MDN Web Docs.

Accessed on: Dec. 11, 2021. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/API/Document

STATEMENT

I certify that this paper is my own work and is not plagiarized,

based on my personal study and research and that I have

acknowledged all material and sources used in its preparation,

whether they be books, articles, reports, lecture notes, and any

other kind of document, electronic or personal communication.

Serang, December 12, 2021

Raden Rifqi Rahman – 13520166

https://html.spec.whatwg.org/
https://cdn-edunex.itb.ac.id/32549-Algorithm--Data-Structure-Parallel-Class/34114-Week-03/17283-Lecture-Notes/1630998282515_W03_A1_ADTList.pdf
https://cdn-edunex.itb.ac.id/32549-Algorithm--Data-Structure-Parallel-Class/34114-Week-03/17283-Lecture-Notes/1630998282515_W03_A1_ADTList.pdf
https://cdn-edunex.itb.ac.id/32549-Algorithm--Data-Structure-Parallel-Class/34114-Week-03/17283-Lecture-Notes/1630998282515_W03_A1_ADTList.pdf
https://developer.mozilla.org/en-US/docs/Glossary/Browsing_context
https://developer.mozilla.org/en-US/docs/Glossary/Browsing_context
https://developer.mozilla.org/en-US/docs/Web/API/Document

